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Monte Carlo Simulation Using the Fourier 
Transform of the Interatomic Potential 
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When doing Monte Carlo simulations using continuous potentials, the 
evaluation of the configurational potential energy in k-space by Fourier trans- 
formation is shown to be a computationally attractive scheme for systems where 
the long-range interatomic interaction spans a dimension comparable to the size 
of the simulated system. 
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We dedicate this paper to Howard Reiss in honor of his 65th birthday. In 
particular, FFA acknowledges with gratitude Howard's professional guidance 
and friendship over the last two decades. 

The Monte Carlo technique has been developed and refined over the past 
three decades and is now one of the most powerful tools in statistical 
mechanics. While technical improvements, such as chain-link storage for 
continuous potentials and effective field boundary conditions for lattice 
systems, have speded up the sampling procedure, the basic technique 
remains that invented by Metropolis, Rosenbluth, Rosenbluth, Teller and 
Teller ~ In this article, we explore whether for certain systems a different 
implementation of calculating the configurational potential energy central 
to the Monte Carlo procedure might not be more effective. In particular, 
we have in mind systems in which the interatomic potential is long range; 
i.e., comparable or larger than the linear dimension of the simulated 
system. 
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We write the total potential energy U for a given atomic configuration 
(rx, r2 ..... r u )  of N atoms interacting with a two-body interatomic potential 
V in the form 

U =  �89 f f  dr dr' p(r) V(Ir - r'l ) p(r') (1) 

where 

N 

p(r )=  ~ 6(r--rfl (2) 
j = l  

is the one particle density of the system. We also adopt the basic idea, used 
in many other contexts, that the interatomic potential may be divided into 
a short-range, repulsive part Vo and a long-range, usually attractive part 
V~; 

V(r) = Vo(r)+ V~(r) (3) 

with Vo(r) = 0 for r > a. An influential example is the extension by Howard 
Reiss of his Scaled-Particle theory of hard spheres to real fluids by treating 
the attractive energy as a uniform background, enabling him to make com- 
parison with experiment (2). In the specific example described in our study, 
the interaction range cutoff a equals unity, and V 0 equals infinity for r < 1. 
The long-range potential V1 is assumed to be nonsingular. We consider our 
finite system to be subject to periodic boundary conditions and express the 
one particle density in terms of its Fourier components 

1 
P(r)=-~  Z (4) 

k = 2~ (~_~1, n2 nv'] - - , , , , ,  - -  
L 2 L~] 

for a system confined to a v-dimensional parallelpiped of volume 
~=L1L2 ...Lv. From Eqs. (1~),  we may write 

1 k~/~ k ~ l ( k ) j ~  k (5) U ~-- U o ( r  1 ..... r N )  - '~'~ 

where the short-range configurational energy U0 is not transformed; 

Uo(r~,..., rN)=~ Z Vo(lri-- rj[) (6) 
t, J 
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We note that the Fourier transform 

I~l(k) = f~2 dr Vl(r ) e ik'r (7) 

where the integration extends over the finite volume g2, is equivalent to the 
solution of an eigenvalue problem 

fadr '  Vl(lr - r ' [ )  uk(r') = I~ l (k  ) Uk(r ) (8) 

where the periodic boundary conditions imply that the eigenfunctions are 
simply 

e l k  �9 r 

uk( r ) -  ~ (9) 

The expression (4) is simply an expansion of the density operator in terms 
of this complete set. Siegert, ~3) in his adaptation of the Stratonovich- 
Hubbard ~4'5) transformation to classical statistical mechanics, has used the 
separation (3) and transformation (7-9) to express the configurational 
integral as an average over an ensemble of Gaussian random functions 
which play the role of an external single particle potential. Siegert's form of 
the configurational integral [-e.g., see Eq. (3.4) of reference (6)], allows an 
exact integration over the volume of configuration space associated with 
the random variables. This integration produces a configurational potential 
energy in the Boltzmann factor of the form given by Eq. (5). The reader is 
referred to Wiegel ~7) for a modern review of applications using Siegert's 
method. 

Concerning the practical implementation of the Monte Carlo method, 
the question of whether Eq. (5) is more useful than the conventional direct 
summation over particle pairs is, of course, answered by whether it is com- 
putationally faster! For ease of addressing this issue, we assume that the 
long-range interaction V 1 scales with a distance parameter R c (2R c < L) 
and is negligible beyond Re, L being the linear size of the simulated system. 
The number of k-vectors Nk needed for an accurate representation of the 
interatomic potential is the same for systems with the same RolL. In a later 
demonstration, we take V1 to be represented by a Gaussian function and 
find that as Rc ~ L/2 (i.e., as the range of interaction approaches the size of 
the simulated system) the number Nk of k-vectors needed for comparable 
accuracy decreases as 1/Rc. This decrease is expected to be a general 
feature. For the standard Monte Carlo particle displacement, the 
calculation of the potential energy change is proportional to Nk operations 
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for the long-range contribution and is a fixed number of operations No 
(independent of volume) for the short-range contribution (i.e., a direct sum 
over a finite and small number of pairs for r < a using neighbor tables or 
chain-link). Hence, for an N-particle system, the Monte Carlo com- 
putational burden goes as N ( N k  + No). In this case, as Rc increases for 
fixed N and L, the computational burden decreases since Ark decreases. For  
fixed RolL,  the burden scales as N. This is to be compared with the 
calculation of the long-range potential energy change using the direct sum- 
mation over pairs which is proportional to the number of particles NI 
within the "sphere of influence" of the long-range interaction, hence 
proportional to R~ in v-dimensions. Here, the Monte Carlo computational 
burden goes as N ( N I + N o ) ~ N  2 as R c ~ L / 2 ;  i.e., it increases as R~ 
increases for fixed N and L. For fixed Rc/L,  the burden scales as N 2. For  a 
long-range interatomic interaction, the Fourier method looks favorable. 

As a demonstration of the two methods, we have carried out Monte 
Carlo simulations for a two-dimensional system of 195 atoms interacting 
with the Gaussian pair potential, 

Vo(r) = ~ ,  r < 1 
(lO) 

Va (r ) = -o~e r2/,2, 0 <~ r <~ 

For  o-~ L, the eigenvalues can be evaluated analytically; 

I21( k ) = - ~aZoje -~ (11) 

In numerical comparisons of Eq. (10) with the back transform of Eq. (7), 
we learned that Eq. (11) is an excellent approximation for ~ < L/4. 

In Fig. (1), we compare the hard-core/Gaussian potential with the 
familiar Lennard-Jones 12:6 potential. The atoms were initialized in a 
triangular lattice of 13 by 15. The reduced density d * =  da 2 and reduced 
temperature T * =  T/~o were taken as 0.8 and 1.0, respectively. The com- 
putational box was approximately square with length of 15.6a. Simulations 
were done for a equal to 1, 2 and 3 using explicit pairwise summation (with 
neighbor tables and Rc=2 .5a )  and using the Fourier transform energy 
evaluation technique. Fig. (2) shows the radial distribution function for 
cr-- I. Most relevant to this study is Fig. (3), where a comparison is made 
of the computational burders v using the two different energy evaluation 
techniques as a function of o- for fixed N and L. Consistent with our earlier 
observations, r scales quadratically with o- when the real-space evaluation 
of U is used and inversely with a when the k-space evaluation is used. The 
cross-over is at approximately ~ = 1.5. Of course, these dependences are not 
exact because of the evaluation of the short-range contribution, updating 
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I 4 

3.0 

Comparison of the hard-core/Gaussian potential (dashed) with the familiar Lennard- 
Jones 12:6 potential (solid). 
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Radial distribution function for the hard-core/Gaussian 2D liquid at d * = 0 . 8  and 
T* = 1.0. 



1358 Pl ischke and  A b r a h a m  

I" 

80 

60 \ / 

40 ~ r  
' I/o 

20  :~ 
# I 

# ~ 

0 ""  ! I I I 

1 2 3 4 
(7 

Fig. 3. A comparison of the Monte  Carlo computational burdens T as a function of a where 
the potential energy is evaluated using ( [ ] )  the direct-space pairwise summation technique 
and ( � 9  the k-space Fourier transform technique. The number  of particles N and the com- 
putational box length L are constant. 

the neighbor tables and total energy after a fixed number of Monte Carlo 
moves, and other overhead operations. In any event, evaluation of the con- 
figurational potential energy in k-space looks very attractive for systems 
where the long-range interatomic interaction spans a dimension com- 
parable to the size of the simulated system. The three-dimensional 
Coulomb system might be the most favorable system for the Fourier 
method. 

REFERENCES 

1. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. 
Phys. 21:1087 (1953). 

2. H. Reiss, Adv. Chem. Phys. 9:1 (1965). 
3. A. J. F. Siegert, Physica 26:$30 (1960). 
4. R. L Stratonovich, Soy. Phys. Doklady 2:416 (1958). 
5. J. Hubbard,  Phys. Rev. Lett. 3:77 (1959). 
6. J. B. Jalickee, A. J. F. Siegert, and D. J. Vezzetti, J. Math. Phys. 10:1442 (1969). 
7. F. W. Wiegel, Introduction to Path-Integral Methods in Physics and Polymer Science (World 

Scientific, Singapore, 1986). 


